

Supported by

, Office of Science

Optimization of High-I_N Scenarios at Reduced Density

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U ORNL** PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine **UCLA** UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

S. Gerhardt, M. Bell, E. Kolemen, R. Kaita, H. Kugel, R. Maingi, J. Menard, D. Mueller, S. A. Sabbagh, C. Skinner, V. Soukhanovskii

> NSTX 2010 Research Forum LR TSG Breakout Session Dec. 2nd, 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

Overview

- Background:
 - High neutron flux ST-CTF designs generally stipulate high κ , I_N, & β_N , but lower f_{GW} in order to increase the NBCD.
 - Shots in XP-948 last year achieved (essentially) appropriate values of κ , & β_N , *but too much density, too little NBCD*, I_N too low.
- Goals:
 - Add improved control tools (β_N control, X-point height control, improved RWM control ?) to high κ , I_N, & β_N scenario with a cold LLD (not in LiTSG).
 - Rerun test cases with a warm LLD to examine operation at reduced density.
 - Assess changes in confinement,
 - Current components,
 - Core n=1 stability.
- Contributes to:
 - Long term ST programmatic goals.
 - Research Milestone R(11-2): Assess the dependence of integrated plasma performance on collisionality.
 - Research Milestone R(11-3): Assess the relationship between lithiated surface conditions and edge and core plasma conditions.

Results Last Year Showed Operation with β_T~25%, But Too Low NBCD

Proposed Run Plan:

Very Tentative Pending LLD Experience

- Establish baseline scenario with improved control. (1 day in ASC)
 - Pick high- δ scenario from 2009 (134837, 135129 are good candidates)
 - This step with a cool LLD.
 - X-point height control
 - Scan β_N request in order to achieve highest β_N consistent with ideal stability.
 - Modifications to squareness, RWM control?
- Repeat with LLD (same day?, different day?)
 - Take best discharge from first day.
 - Repeat with reduced density.
 - Like to scan the density if at all possible. Use SGI?
 - Divertor puff for reduced Carbon influx?
 - Implement early EFC as needed.
 - Other impurity reduction techniques...dropper? A little HHFW?
 - Need LLD operating experience to properly address this step.

(1 day in LR TSG)

Backup

NSTX is Beginning To Approach Interesting Regimes For an FNSF/ST-CTF

- ITER-era goal for ST: make a CTF, irradiate materials (would like 2MW/m²).
- Biggest gap between NSTX and ST-CTF may be current drive

	NSTX, 134837	Peng 2005 ¹ , Phase 3	Wilson 2004 ²	Peng 2009 ³
Wall Loading (MW/m ²)	Ha!	2	1.5	
к	2.7	3.1	2.5	
I _N	4	5.8	6.1	
f _{GW}	0.8			
β _N	6	5.9	3.5	
β _T	28	28	22	
f _{BS} (%)	35	0.5	0.38	
f _{NBCD} (%)	10			
H ₉₈	0.8	1.5	1.3	

[1] Peng et al, PPCF 2005 [2] Wilson, et al., IAEA 2004 [3] Peng, et al., APS 2009

Too much power→Ideal MHD Too little power→Rotating MHD.

Need to operate at the highest beam powers consistent with stability -> β_N *control*

β_N Control Has Been Demonstrated in 2009

- β_N algorithm compensates for loss of confinement with n=3 braking.
- Control works over a range of rotation levels
- Proposal by SPG in MS-TSG to optimize the system.

S.A. Sabbagh, 2009 NSTX Results Review

Modifications to the rtEFIT Basis Functions Resulted in Improved Real-time Reconstructions

- Occasional poorly converged equilibria lead to incorrect outer gap, β_{N}
 - Kick off an deleterious transient in the vertical field coil current.
 - Edge current not allowed
- New basis function model based on those developed for off-line magnetics-only reconstruction (Columbia University) $p'(\psi_{n}) = a_{1}\psi_{n}(1-\psi_{n})$
 - Tested on literally > 2 million equilibria
 - Finite edge current through $f'(\psi_n)$

$$ff'(\psi_n) = b_0 + b_1 \psi_n \left(1 - \frac{1}{3} \psi_n^2\right) + b_2 \psi_n^2 \left(1 - \frac{2}{3} \psi_n\right)$$

$$ff'(\psi_n) = b_0 + b_1 \psi_n \left(1 - \frac{1}{3} \psi_n^2\right) + b_2 \psi_n$$

improvement

$$= b_0 + b_1 \psi_n \left(1 - \frac{1}{3} \psi_n^2 \right) + b_2 \psi_n^2 \left(1 - \frac{2}{3} \psi_n \right)$$

- Considerable real-time reconstruction
 - Reduction in β_N "noise" indicative of improved reconstructions

December 2nd, 2009 LR TSG Breakout Session, High Normalized Current at Reduced Density (Gerhardt)

New Tools This Year Offer Hope For Improved Performance

- Improved rtEFIT basis vectors
 - Implemented on 2nd to last day of run
 - Use the EFIT01 formulation
 - Appeared to reduce transients in gap-out, β_N .
- β_N -control via NB modulations
 - First implemented last year, showed considerable promise.
 - Proposal in MS-TSG to optimize gains, test performance.
 - MS milestone on disruption avoidance
- RWM/RFA control development
- Liquid Lithium Divertor
 - Should provide significant pumping capability, leading to density reduction, increased T_e/n_e .
 - Key to increasing the NBCD efficiency.
- Upper/Lower X-point Height Control
 - Proposed in ASC-TSG by E. Kolemen.
- Squareness control
 - Pending progress on PF-4/PF-5 mutual force interlock.

